Calculus A for Economics

Solutions to Exercise Number 5

1) We need to check that $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
a) $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow 2}\left((x-3)^{2}-x+2\right)=1-2+2=1=f(2)$. Hence $f(x)$ is continuous at $x_{0}=2$.
b) $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow-1} \frac{x-2}{2 x+3}=\frac{-1-2}{-2+3}=-3=f(-1)$. Hence $f(x)$ is continuous at $x_{0}=-1$.
2) a) We will use the fact that a sum, product and composition of continuous functions is also a continuous function. The function $(x-2)^{3}+5$ is a polynomial, and hence it is continuous for all x. The function \sqrt{x} is continuous for $x>0$. Hence $\sqrt{(x-2)^{3}+5}$ is continuous at 2 if it is defined near that point. The domain of definition is $x \geq 2+\sqrt[3]{-5}$ which clearly includes the point 2 and a neighbor of that point.
b) We use the definition of the limit as stated in exercise 1). To check that $\lim _{x \rightarrow 2} f(x)$ exists we check the two one side limits. First, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}+4\right)=8$. Then $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} x^{3}=8$. Thus $\lim _{x \rightarrow 2} f(x)=8$. We have $f(2)=2^{3}=8$. Hence $\lim _{x \rightarrow 2} f(x)=f(2)$ and the function is continuous at 2 .
c) Since $f(x)$ is not defined at 2 , it is clearly not continuous at that point.
d) We check the one side limits. We have $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{1}{x-2}$. This limit does not exist, and hence, eventhough the function is defined at 2 , it is not continuous there.
3) a) Since $\frac{1}{x}$ is not defined at $x=0$, then $f(x)$ is not continuous at that point. For all $x \neq 0$ the function $\frac{1}{x}$ is continuous, and 2^{x} is also continuous for all x. Hence $2^{\frac{1}{x}}$, being the composite function of $\frac{1}{x}$ and 2^{x}, is continuous for all $x \neq 0$. Clearly then $1+2^{\frac{1}{x}}$ is continuous for all $x \neq 0$. Since $1+2^{\frac{1}{x}}>0$ for all $x \neq 0$, it follows that $f(x)=\frac{1}{1+2^{\frac{1}{x}}}$ is continuous for all $x \neq 0$.
b) The function $f(x)$ is continuous for all x. Indeed, since $|x|+1>0$ for all x, and $|x|$ is continuous for all x, then $\frac{1}{|x|+1}$ is continuous for all x. The function $\frac{x^{2}}{2}$ is a polynomial, and hence a continuous function. Thus $f(x)$ is continuous for all x.
4) Since $x+1$ and $3-a x^{2}$ are polynomials, they are continuous for all x. Thus, the only point where $f(x)$ may not be continuous is at $x=1$. We have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+$
5) $=2$. Also, $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(3-a x^{2}\right)=3-a$. Therefore, $\lim _{x \rightarrow 1} f(x)$ will exist only if we have $2=3-a$, or $a=1$. For this choice of a, we have $\lim _{x \rightarrow 1} f(x)=f(1)$. Hence $f(x)$ is continuous for all x if and only if $a=1$.
6) The only possible problematic points are $x=2$ and $x=3$. Indeed, for all other values of x, the function is continuous. We have $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2^{-}}(x+2)=4$. Also, $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(A x+B)=2 A+B . \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(A x+B)=3 A+B$, and $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \frac{x-3}{x^{2}-9}=\lim _{x \rightarrow 3^{+}} \frac{1}{x+3}=\frac{1}{6}$. Thus, $f(x)$ will be continuous at $x=2$ if and only if $4=2 A+B$, and at $x=3$ if and only if $\frac{1}{6}=3 A+B$. Solving these two equations we get $A=-\frac{23}{6}$ and $B=\frac{35}{11}$.
7) The function $y=3^{x}$ is continuous for all x. Therefore, if $f(x)$ is any given function then $\lim _{x \rightarrow \infty} 3^{f(x)}=3^{\lim _{x \rightarrow \infty} f(x)}$. Hence, to compute $\lim _{x \rightarrow \infty} 3^{3^{\frac{x^{2}-1}{x^{2}+1}}}$ we first compute $\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x^{2}}}{2+\frac{1}{x^{2}}}=\frac{1}{2}$. Hence $\lim _{x \rightarrow \infty} 3^{\frac{x^{2}-1}{2 x^{2}+1}}=3^{1 / 2}$.
b) Similarly as in a) we have, $\lim _{x \rightarrow 1} \ln \frac{x^{2}-1}{x-1}=\ln \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\ln \lim _{x \rightarrow 1}(x+1)=\ln 2$.
8) Let $f(x)=x^{4}-2 x-3$. The function is continuous for all x. Also $f(0) f(2)=(-3) \cdot 9<$ 0 . Therefore by the stated Theorem $f(x)$ has a root in the interval $[0,2]$.
9) The function $f(x)$ is continuous for all x. Therefore to obtain the result, we need to find an interval $[a, b]$ such that $f(a) f(b) \leq 0$. Choose $a=-1$ and $b=1$. Then $f(-1) f(1)=$ $3 \cdot(-1)<0$. Apply the Theorem.
10) Given $f(a)<d<f(b)$ define $g(x)=f(x)-d$. It is given that $f(x)$ is continuous in the interval $[a, b]$. Hence $g(x)$ is also continuous in that interval. Since $f(a)<d$ then $g(a)=f(a)-d<0$. Since $d<f(b)$ then $g(b)=f(b)-d>0$. hence $g(a) g(b)<0$. Thus, it follows from the Theorem that there is a point $c \in[a, b]$ such that $g(c)=0$. Hence $f(c)=d$.
11) Consider the function

$$
f(x)= \begin{cases}-x-2, & 0 \leq x<1 \\ x, & 1 \leq x \leq 2\end{cases}
$$

Let $[a, b]=[0,2]$. Then $f(0)=-2<0$ and $f(2)=2>0$. Also, for any $x \in[0,2]$ we have $f(x) \neq 0$. There is no contradiction to the Theorem because it is easy to check that $f(x)$ is not continuous at $x=1$.
11) Assume that the claim about the maximal point is not true. This means that there is a point $a<c<b$ such that $f(c)$ is the maximal value that the function $f(x)$ obtains
in $[a, b]$. Since $f(x)$ is one to one, it follows that $f(a)<f(c)$ and $f(b)<f(c)$. Clearly the function $f(x)$ is continuous in both intervals $[a, c]$ and $[c, b]$. Choose a point d such that $f(a)<d<f(c)$ and $f(b)<d<f(c)$. Such a d exists because $f(a)<f(c)$ and $f(b)<f(c)$. Applying exercise 9) twice, once for the interval $[a, c]$ and then for $[c, b]$, we can find $a \leq x_{1}<c$ and $c<x_{2} \leq b$ such that $f\left(x_{1}\right)=d$ and $f\left(x_{2}\right)=d$. Since $x_{1} \neq x_{2}$ we obtained a contradiction to the fact that $f(x)$ is one to one. Thus, the maximal value of $f(x)$ is obtained at one of the end points a or b. The argument for the minimal value is the same.
12) We need to prove that for any point x_{0} we have $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. We know that $f(x+y)=f(x)+f(y)$ for all x and y. Plug $x=y=0$ to get $f(0)=2 f(0)$ and hence $f(0)=0$. Also, plug $y=-x$ to get $f(0)=f(x)+f(-x)$ and since $f(0)=0$ we get $f(-x)=-f(x)$. In other words $f(x)$ is an odd function. Plug $y=-x_{0}$ to get $f\left(x-x_{0}\right)=f(x)+f\left(-x_{0}\right)=f(x)-f\left(x_{0}\right)$, where the last equality follows from the fact that $f(x)$ is odd. Hence $f(x)=f\left(x-x_{0}\right)+f\left(x_{0}\right)$. Taking the limit as x goes to x_{0} we have $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}}\left(f\left(x-x_{0}\right)-f\left(x_{0}\right)\right)$. Notice that we need to prove that $\lim _{x \rightarrow x_{0}} f(x)$ exists. We will prove that once we prove that the two limits $\lim _{x \rightarrow x_{0}} f\left(x-x_{0}\right)$ and $\lim _{x \rightarrow x_{0}} f\left(x_{0}\right)$ exists. The last one clearly exists and is equal to $f\left(x_{0}\right)$. As for the first one, we have $\lim _{x \rightarrow x_{0}} f\left(x-x_{0}\right)=\lim _{z \rightarrow 0} f(z)=f(0)=0$. The first equality follows from the change of variables $z=x-x_{0}$. Clearly then $x \rightarrow x_{0}$ implies $z \rightarrow 0$. The second equality follows from the fact that $f(x)$ is continuous at zero. The last equality follows from $f(0)=0$. Hence, the identity $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}}\left(f\left(x-x_{0}\right)-f\left(x_{0}\right)\right)$, implies that $\lim _{x \rightarrow x_{0}} f(x)$ exists, and also that $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$. Hence $f(x)$ is continuous at $x=x_{0}$.

