
Calculus A for Economics

Solutions to Exercise Number 5

1) We need to check that limx→x0 f(x) = f(x0).

a) limx→x0 f(x) = limx→2((x− 3)2−x+2) = 1−2+2 = 1 = f(2). Hence f(x) is continuous

at x0 = 2.

b) limx→x0 f(x) = limx→−1
x−2
2x+3

= −1−2
−2+3

= −3 = f(−1). Hence f(x) is continuous at

x0 = −1.

2) a) We will use the fact that a sum, product and composition of continuous functions

is also a continuous function. The function (x − 2)3 + 5 is a polynomial, and hence it is

continuous for all x. The function
√

x is continuous for x > 0. Hence
√

(x− 2)3 + 5 is

continuous at 2 if it is defined near that point. The domain of definition is x ≥ 2 + 3
√−5

which clearly includes the point 2 and a neighbor of that point.

b) We use the definition of the limit as stated in exercise 1). To check that limx→2 f(x)

exists we check the two one side limits. First, limx→2− f(x) = limx→2−(x2 + 4) = 8. Then

limx→2+ f(x) = limx→2+ x3 = 8. Thus limx→2 f(x) = 8. We have f(2) = 23 = 8. Hence

limx→2 f(x) = f(2) and the function is continuous at 2.

c) Since f(x) is not defined at 2, it is clearly not continuous at that point.

d) We check the one side limits. We have limx→2+ f(x) = limx→2+
1

x−2
. This limit does not

exist, and hence, eventhough the function is defined at 2, it is not continuous there.

3) a) Since 1
x

is not defined at x = 0, then f(x) is not continuous at that point. For all

x 6= 0 the function 1
x

is continuous, and 2x is also continuous for all x. Hence 2
1
x , being the

composite function of 1
x

and 2x, is continuous for all x 6= 0. Clearly then 1+2
1
x is continuous

for all x 6= 0. Since 1 + 2
1
x > 0 for all x 6= 0, it follows that f(x) = 1

1+2
1
x

is continuous for all

x 6= 0.

b) The function f(x) is continuous for all x. Indeed, since |x| + 1 > 0 for all x, and |x| is

continuous for all x, then 1
|x|+1

is continuous for all x. The function x2

2
is a polynomial, and

hence a continuous function. Thus f(x) is continuous for all x.

4) Since x+1 and 3− ax2 are polynomials, they are continuous for all x. Thus, the only

point where f(x) may not be continuous is at x = 1. We have limx→1− f(x) = limx→1−(x +

1



1) = 2. Also, limx→1+ f(x) = limx→1+(3 − ax2) = 3 − a. Therefore, limx→1 f(x) will exist

only if we have 2 = 3− a, or a = 1. For this choice of a, we have limx→1 f(x) = f(1). Hence

f(x) is continuous for all x if and only if a = 1.

5) The only possible problematic points are x = 2 and x = 3. Indeed, for all other values

of x, the function is continuous. We have limx→2− f(x) = limx→2−
x2−4
x−2

= limx→2−(x+2) = 4.

Also, limx→2+ f(x) = limx→2+(Ax+B) = 2A+B. limx→3− f(x) = limx→3−(Ax+B) = 3A+B,

and limx→3+ f(x) = limx→3+
x−3
x2−9

= limx→3+
1

x+3
= 1

6
. Thus, f(x) will be continuous at x = 2

if and only if 4 = 2A+B, and at x = 3 if and only if 1
6

= 3A+B. Solving these two equations

we get A = −23
6

and B = 35
11

.

6) The function y = 3x is continuous for all x. Therefore, if f(x) is any given func-

tion then limx→∞ 3f(x) = 3limx→∞ f(x). Hence, to compute limx→∞ 3
x2−1
2x2+1 we first compute

limx→∞ x2−1
2x2+1

= limx→∞
1− 1

x2

2+ 1
x2

= 1
2
. Hence limx→∞ 3

x2−1
2x2+1 = 31/2.

b) Similarly as in a) we have, limx→1 lnx2−1
x−1

= ln limx→1
x2−1
x−1

= ln limx→1(x + 1) = ln2.

7) Let f(x) = x4−2x−3. The function is continuous for all x. Also f(0)f(2) = (−3)·9 <

0. Therefore by the stated Theorem f(x) has a root in the interval [0, 2].

8) The function f(x) is continuous for all x. Therefore to obtain the result, we need to

find an interval [a, b] such that f(a)f(b) ≤ 0. Choose a = −1 and b = 1. Then f(−1)f(1) =

3 · (−1) < 0. Apply the Theorem.

9) Given f(a) < d < f(b) define g(x) = f(x) − d. It is given that f(x) is continuous

in the interval [a, b]. Hence g(x) is also continuous in that interval. Since f(a) < d then

g(a) = f(a)− d < 0. Since d < f(b) then g(b) = f(b)− d > 0. hence g(a)g(b) < 0. Thus, it

follows from the Theorem that there is a point c ∈ [a, b] such that g(c) = 0. Hence f(c) = d.

10) Consider the function

f(x) =

{
−x− 2, 0 ≤ x < 1

x, 1 ≤ x ≤ 2

Let [a, b] = [0, 2]. Then f(0) = −2 < 0 and f(2) = 2 > 0. Also, for any x ∈ [0, 2] we have

f(x) 6= 0. There is no contradiction to the Theorem because it is easy to check that f(x) is

not continuous at x = 1.

11) Assume that the claim about the maximal point is not true. This means that there

is a point a < c < b such that f(c) is the maximal value that the function f(x) obtains
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in [a, b]. Since f(x) is one to one, it follows that f(a) < f(c) and f(b) < f(c). Clearly

the function f(x) is continuous in both intervals [a, c] and [c, b]. Choose a point d such

that f(a) < d < f(c) and f(b) < d < f(c). Such a d exists because f(a) < f(c) and

f(b) < f(c). Applying exercise 9) twice, once for the interval [a, c] and then for [c, b], we

can find a ≤ x1 < c and c < x2 ≤ b such that f(x1) = d and f(x2) = d. Since x1 6= x2

we obtained a contradiction to the fact that f(x) is one to one. Thus, the maximal value of

f(x) is obtained at one of the end points a or b. The argument for the minimal value is the

same.

12) We need to prove that for any point x0 we have limx→x0 f(x) = f(x0). We know

that f(x + y) = f(x) + f(y) for all x and y. Plug x = y = 0 to get f(0) = 2f(0) and

hence f(0) = 0. Also, plug y = −x to get f(0) = f(x) + f(−x) and since f(0) = 0

we get f(−x) = −f(x). In other words f(x) is an odd function. Plug y = −x0 to get

f(x − x0) = f(x) + f(−x0) = f(x) − f(x0), where the last equality follows from the fact

that f(x) is odd. Hence f(x) = f(x − x0) + f(x0). Taking the limit as x goes to x0

we have limx→x0 f(x) = limx→x0(f(x − x0) − f(x0)). Notice that we need to prove that

limx→x0 f(x) exists. We will prove that once we prove that the two limits limx→x0 f(x− x0)

and limx→x0 f(x0) exists. The last one clearly exists and is equal to f(x0). As for the first

one, we have limx→x0 f(x − x0) = limz→0 f(z) = f(0) = 0. The first equality follows from

the change of variables z = x− x0. Clearly then x → x0 implies z → 0. The second equality

follows from the fact that f(x) is continuous at zero. The last equality follows from f(0) = 0.

Hence, the identity limx→x0 f(x) = limx→x0(f(x − x0) − f(x0)), implies that limx→x0 f(x)

exists, and also that limx→x0 f(x) = f(x0). Hence f(x) is continuous at x = x0.
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